
Gateway’s HALO module heads to the U.S., on its long path to orbiting the Moon.
Preparations for Lunar Gateway are starting to come together. Thales Alenia Aerospace engineers recently began a series of checks on the HALO (Habitation Logistics Outpost) core module. Currently at the company’s Turin, Italy facility, the module is set to head to the U.S. to contractor Northrop Grumman’s Gilbert, Arizona site next month, aboard an Antonov AN-124-100 aircraft.
The HALO segment is the crucial core of what will become Lunar Gateway. Along with environmental and stress tests, the Thales Alenia team will install valves, carry out leak checks, and prepare for integrating secondary structures with HALO. One airlock, the Emirates Crew and Science Module was built and provided by the United Arab Emirates’ Mohammed bin Rashid Space Centre. The airlock will be used for space walks outside of Gateway. In exchange, the UAE will receive an astronaut slot on an Artemis expedition.
The first welding of the ring and cylinder segments for HALO occurred at Thales Alenia Space in 2021, marking the first major milestone for assembly of the module’s primary structure.
Northrop Grumman was awarded the $935 million dollar contract to develop the Gateway HALO module in 2021. NASA’s FY2025 budget allocates over $817 million for the continued construction of Gateway.
What’s Next for HALO and Gateway
“To ensure all flight hardware is ready to support Artemis IV—the first crewed mission to Gateway—NASA is targeting the launch of HALO and the Power and Propulsion Element no later than December 2027,” Laura Rochon (NASA-Johnson Spaceflight Center) told Universe Today in a recent email. “These modules will launch together aboard a SpaceX Falcon Heavy rocket and spend about a year traveling uncrewed to lunar orbit, while providing scientific data on solar and deep space radiation during transit.”
Once the module arrives at Northrop Grumman’s Arizona facility, it will undergo more tests and integration with the propulsion stage prior to launch. As one of four pressurized modules, HALO will support crew, experiments and internal and external payloads. Gateway will serve as a staging point, supporting lunar research and crews on the surface. One big advantage for Gateway is that it would act as a reusable ‘command module’ for expeditions to the Moon, allowing for longer stays on the surface.
A Deep Space Station
Like the International Space Station, Gateway is an international effort. The European Space Agency is designing its Lunar Link (part of ESA’s larger LunaNet DTN framework initiative) for the station. The Canadian Space Agency (CSA) is supplying a robotic arm, its Small Orbital Replacement Unit Robotic Interface. Gateway will be approximately a fifth the size and volume of the ISS. Unlike the permanently crewed ISS, Gateway will only host temporary expeditions, and will spend much on its time vacant and running in autonomous mode.
“The ISS has been a cornerstone of space research in low-Earth orbit for more than two decades,” says Rochon. “Gateway expands this legacy into the deep space environment. Gateway will operate in orbit around the Moon, where radiation is a greater concern due to lack of a protective shield. It took 40 launches and over 13 years to build the ISS. Gateway will be fully constructed in four launches using advanced technology and capabilities focused on what is needed to support long-term human lunar exploration.”
Science and research will still happen on Gateway… even when humans are absent. “Gateway will focus on pushing the boundaries of remote and autonomous operations,” says Rochon. “This will enable Gateway to conduct science investigation and support missions, even when crew are not present.”
Artemis at a Crossroads
This all happens at a time of change and uncertainty for NASA. A layoff of 1,000 employees announced earlier this week was put on hold…for now. Many pundits have also questioned the burgeoning complexity and cost overruns for the Artemis initiative, and if Gateway is still needed.
NASA’s large Space Launch System (SLS) rocket finally got off the ground with Artemis I in November 2022. The first crewed lunar flyby on Artemis II has been pushed back to April 2026. The first lunar landing mission on Artemis III relies heavily on SpaceX’s Starship Heavy and Starship HLS (Human Landing System) as part of its architecture. Starship has another suborbital launch coming up on February 26th. The first possible orbital flight of Starship is planned for this April. SpaceX still has lots of hurdles to overcome prior to the Artemis III lunar landing, set for 2027.
Gateway will orbit the Moon in a unique, Near-rectilinear halo orbit (NRHO). This unique type of orbit is necessary for astronauts to access the entirety of the lunar surface. This is especially true for a landing in the south polar regions. The Cis-Lunar Autonomous Positioning System Technology Operations Navigations Experiment (CAPSTONE) mission launched in 2022 on a Rocket Lab Electron rocket is pioneering this type of orbit. An NRHO path also affords the station a near-continuous line-of-sight communications link with controllers on Earth.
Despite the hurdles it faces, it would be great to finally see humans living and working around the Moon. Imagine the view! For now, we can watch as the pieces come together, and the core HALO module for Gateway takes ‘one small step’ closer to the launch pad.